İÇİNDEKİLER
Önsöz 7 GİRİŞ 17 I. BÖLÜM BÖLÜNEBİLME TEORİSİ §1. TEMEL KAVRAMLAR VE TEOREMLER 23 1.1. Tam Sayılar 23 1.2. Bölüm ve Bölünebilme 25 §2. EN BÜYÜK ORTAK BÖLEN (E.B.O.B) 27 §3. ÖKLİD ALGORİTMASI 28 §4. EN KÜÇÜK ORTAK KAT (E.K.O.K) 29 4.1. Ortak Katlar 29 4.2. Sayıların Ortak Katını Bulma 30 §5. ASAL SAYILAR – ERATOSTHENES KALBURU 31 5.1. Asal Sayı Kavramı 31 5.2. Eratosthenes Kalburu 32 §6. FERMAT VE MERSENNE ASAL SAYILARI 33 §7. 2, 3, 5, 6, 11, 19, 30, … SAYILARI İLE BÖLÜNEBİLME 35 7.1. Sayı Sistemleri Hakkında 35 7.2. Bölünebilme Koşulları 37 §8. TAM SAYILARI ÇARPMA KURALININ TEORİK ESASLARI 42 8.1. Tek Rakamlı İki Tam Sayının Çarpımı 42 8.2. İki Tamsayının Çarpımı 43 8.3. Hatırlatma 43 8.4. Tabanlar 45 §9. PROBLEMLER 46 II. BÖLÜM SAYILAR VE TABANLAR §1. TABAN ARİTMETİĞİ 53 §2. TAM SAYILARIN VERİLEN TABANA GÖRE YAZILIŞI 54 2.1. Açıklama 54 2.2. Özelik 56 2.3. Alıştırmalar 58 §3. BİR TABANA GÖRE İŞLEM 58 3.1. Verilen Bir Tabana Göre İşlemler 58 3.2. Örnekler 60 §4. 10 DAN BÜYÜK TABANLAR 61 4.1. Verilen Bir 10 dan Büyük Tabana Göre İşlemler 61 4.2. Örnekler 62 4.3. Alıştırmalar 64 III. BÖLÜM ZİNCİR KESİRLER §1. SONLU ZİNCİR KESİR KAVRAMI 65 1.1. Zincir Kesir ve Uygun Kesir 65 §2. UYGUN KESİRLERİN ÖZELİKLERİ 67 §3. ZİNCİR KESİRİN KENDİ UYGUN KESİRLERİYLE YAKLAŞIMI 73 §4. LEGENDRE TESTİ 74 §5. VALEN TEOREMİ 75 §6. SONSUZ ZİNCİR KESİRLER VE UYGUN KESİRLERİ 76 §7. PERİYODİK ZİNCİR KESİRLER 79 §8. SONSUZ ZİNCİR KESRİN YAKINSAKLIK PROBLEMİ 82 §9. BELİRSİZ DENKLEMLER 85 §10. BÖLÜME AİT PROBLEMLER 86 IV. BÖLÜM ESAS SAYISAL FONKSİYONLAR §1. ÇARPIMSAL FONKSİYON KAVRAMI 93 §2. BÖLENLERİN SAYISI VE TOPLAMI 94 2.1. |